首页> 外文OA文献 >Machine Learning Methods for Attack Detection in the Smart Grid
【2h】

Machine Learning Methods for Attack Detection in the Smart Grid

机译:智能电网中攻击检测的机器学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Attack detection problems in the smart grid are posed as statistical learningproblems for different attack scenarios in which the measurements are observedin batch or online settings. In this approach, machine learning algorithms areused to classify measurements as being either secure or attacked. An attackdetection framework is provided to exploit any available prior knowledge aboutthe system and surmount constraints arising from the sparse structure of theproblem in the proposed approach. Well-known batch and online learningalgorithms (supervised and semi-supervised) are employed with decision andfeature level fusion to model the attack detection problem. The relationshipsbetween statistical and geometric properties of attack vectors employed in theattack scenarios and learning algorithms are analyzed to detect unobservableattacks using statistical learning methods. The proposed algorithms areexamined on various IEEE test systems. Experimental analyses show that machinelearning algorithms can detect attacks with performances higher than the attackdetection algorithms which employ state vector estimation methods in theproposed attack detection framework.
机译:智能电网中的攻击检测问题被视为针对不同攻击场景的统计学习问题,在不同攻击场景中,批量或在线设置下都可以观察到测量结果。在这种方法中,机器学习算法用于将测量结果分类为安全或受到攻击。提供了一种攻击检测框架,以利用有关系统的任何现有先验知识以及所提出方法中问题稀疏结构所产生的超越约束。将著名的批处理和在线学习算法(监督和半监督)与决策和功能级别融合相结合,对攻击检测问题进行建模。利用统计学习方法,分析了攻击场景中攻击向量的统计和几何特性与学习算法之间的关系,以检测出不可观测的攻击。在各种IEEE测试系统上检查了提出的算法。实验分析表明,与在建议的攻击检测框架中采用状态向量估计方法的攻击检测算法相比,机器学习算法能够检测出性能更高的攻击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号